Hydrogen as an Indicator to Assess Biological Activity During Trace-Metal Bioremediation

(1) Introduction

The design and operation of a i tal or
scheme requires that specific redox conditions be achieved at given zones of an aquifer
for a pre-determined duration. Tools are therefore needed to identify and quantify the
terminal electron accepting processes (TEAPs) that are being achieved during
bioremediation in an aquifer, and that this be done at a high spatial resolution.
Dissolved hydrogen (H,) concentrations have been shown to correlate with specific
TEAPs during bioremediation in an aquifer (Table 1). Theoretical analysis has shown
that these steady-state hydrogen levels are solely dependent upon the physiological
of the hydrog i i i with hydrogen i
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(3b) Single and Dual Electron Donor Experiment — Parameter Estimation
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« What are the effects of a carbon source on H, consumption?

* What are the effects of hydrogen on the carbon source consumption?
« Can the dual substrate model predict H, concentrations in a
continuous flow environment at steady-state?

« What is the effect of iron bioavailability on steady state H,
concentrations?

(5) Effect of Iron Bioavailability on H, Conc.

Experimental Summary

* The addition of the electron shuttle AQDS was essential to
obtain measurable iron reduction in batch experiments
using unsaturated FRC soil over a 35 day period (Figure
10).

* In column experiments, the addition of AQDS increased the
rate of iron reduction from 0.16 to 0.35 pmol/g soil/d as well
as slightly decreased the H, concentrations (Figure 11).
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Figure 10. Batch experiments with 1g of unsaturated FRC soil and 1ml
of G. sulfurreducens growth culture in 9ml basal media with 0 to S00uM
of 9,10-Anthragquinone-2,6-Disulfonic Acid (AQDS). Values are average
of duplicate samples taken from the same microcosm (+/- std).

50 uM AQDS
(after 90 days)

Without AQDS
(after 90 days)

+ 15cm x 1cm columns packed with
FRC soil.

 Phosphate buffered media with
3mM acetate (Q = 0.5 ml/min).

« Both columns inoculated with G
sulfurreducens.

+ One column supplied 50uM AQDS.

Table 4. Fe(l1) concentrations after 96 day
column operation for different extraction times
in0.5N HCI.

(3c) Single and Dual Electron Donor Experiment
Model Results

* Kinetic parameters for iron reduction agree thermodynamically with previously
measured growth kinetics from other TEAPs (Figure 4). Sulfate reduction and

(3a) Single and Dual Electron Donor Experiment

Model Formulation

Hydrogen consumption by bacteria can be described by equation 1, while growth of
hydrogen consuming bacteria can be described by equation 2.

C dX
H, -
1) Amax X @ = Yean, X -bX
@ K, +Cy, dt
q specific hydrogen uptake rate, Ciz = hydrogen concentration,
G \aximum rate of hydrogen uptake, Yeaz = yield coefficient,
K, = hydrogen halfsaturation constant, b = mortality coefficient.

jomass conc. of H consuming organisms.

Substituting the growth equation (eq. 2) into the consumption equation (eq. 1) for steady
state conditions and solving for C,, yields equation 3.
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e @nd b are expected to be similar for anaerobic organisms regardless of the
TEAP. Kgy, and Y, are dependent upon the amount of energy available to the
particular form of respiration. The more energetically favorable the reaction, the lower
the Kgy value and the higher the Y, Therefore, as redox conditions decrease,
steady state H, concentrations increase (Table 1). However, the above equation (eq.
3) may not hold during a bioremediation scheme in which an organic substrate is
injected into the subsurface and where organisms may consume hydrogen and carbon

. This dual scenario is described in eqgs. 4-6
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is kinetics from Robinson and Tiedje Arch. Microbiol. 1984, 137, 26-32.

* Results from the model analysis using just the single donor kinetics (H, as the sole
electron donor) indicate that the calculated steady-state H, concentrations are
significantly higher than observed in our column experiments as well as field data
(Table 2).

« Dual donor analysis using eq. 4 (with and without inhibition) indicate that steady-
state H, concentrations were unaffected by acetate concentrations below acetate’s
half saturation constant (Figure 5).

(4) Oak Ridge (FRC-background) Soil
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Figure 4. Comparison of cell yield coefficient

* 30 cm x 5cm column packed

pl buffered media with
3mM acetate was supplied at 0.5
ml/min to stimulate the

Column Experiment
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* Bioavailable (1hr 0.5N HCl-extractable) Fe(ll)/total
bioavailable iron ratios increased over time and
0.01 f leveled off after 100 days (Figure 6), but bioavailable
0001 001 0.1 1] 10 100 0001 001 0.1 1 10 100 Fe(I1) concentrations continue to increase (Figure 7).
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Figure 5. Steady-state aqueous hydr ogen concentration as a function of acetate and Fe*. Fe*
concentrations are 0.3, 0.25, 0.225, 0.2, and 0.1 mM . Curves calculated from Eqn. 4 using coefficients from
batch experiments. Figure (a) iswith no inhibition between electron donors, and figure (b) uses inhibition
coefficients. Dashed lineis the Monod half-saturation constant for acetate degradation.

Figure 9. Device used to sample H,
in column experiments (3.5ml).

* Sulfate reduction was observed starting on day 208.

* H, concentrations typical of iron-reducing processes
(0.1-1nM) were observed in the column for the first
75-100 days of the experiment after which the H,
fluctuated over a substantial range (Figure 8).

Extraction Fe(ll)"in Fe(I)"in
Time | Column without | Column with Time (day)
1 hour 15216 33839 Figure 11 H, concentrations over time from the effluent of
6 da 308+8.0 668+ 8.0 flow-through column experiments without (_) and with ()
50 da 420:38 64646 50 4M AQDS addition.
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(6) Summary and Conclusions

*The presence of acetate did not affect the specific consumption of H, and the
presence of H, did not affect the specific consumption of acetate by Geobacter
sulfurreducens in batch cultures.

*Theoretical analysis shows that at acetate concentrations less than KC,
steady-state H, levels are not strongly influenced by the presence of acetate.

*Steady-state H, concentrations calculated using kinetic coefficients from
idealized batch conditions differ from H, concentrations measured in FRC
soi| column experiments, as well as in the field.

*H, concentrations typical of iron-reducing conditions were recorded in a
continuous flow column filled with FRC soil during iron reduction by the
indigenous microbial population. Sulfate reduction, as well as significant
fluctuation in H,, was measured after the bioavailable Fe(l1l) was reduced.

*Addition of AQDS doubled the rate of iron reduction but only reduced
steady-state H, concentrations slightly in flow-through FRC soil columns.

Interesting Side Experiment - Iron Reoxidation
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Figure 12. During reoxidation, dissolved oxygen is consumed rapidly at first
1 followed by a slow reaction (long DO trailing, which is not observed for the
bromide tracer).
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Figure 13. Results from batch experiments show that G. sulfurreducens
can reduce reoxidized iron much more readily than the iron present in
the original FRC soil (ave +- std, n=3)

« Supplied aerated phosphate
buffered media (0.35 ml/min).




